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Suppression of higher harmonics at noise induced resonances
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We consider the generation of higher harmonics in periodically driven noisy nonlinear systems.
Recent numerical studies of higher harmonics in such systems have shown so-called noise induced
resonances that manifest themselves in a strong suppression of higher harmonics at certain values
of the noise level. A theory for this peculiar phenomenon is presented, unmasking the universal
character of these resonances and their widespread occurrence.

PACS number(s): 02.50.—r, 05.40.4j

I. INTRODUCTION

Much attention has been paid in the past years to the
response of nonlinear noisy systems to periodic signals
[1-13]. It has been demonstrated that noise can actually
amplify periodic signals in bistable filters due to stochas-
tic resonance. Harmonic mixing in a noisy nonlinear
system was discussed in great detail in Ref. [14]. The
impact of noise on the generation of higher harmonics
has become of interest only very recently. The response
of a periodically driven noisy system to an additional
small harmonic signal was studied in [15]. The depen-
dence of the intensity and phases of higher harmonics on
the noise strength was studied in detail for a model for
absorptive optical bistability [16]. Stochastic resonance
was reported also in [17] for a nonlinear mixing process
in the presence of fluctuations. The impact of noise on
the distortion of nonperiodic signals—also an effect due
to the generation of higher harmonics—was studied by
analog simulations in [18]. Higher harmonics generation
in a periodically driven bistable system has also been
addressed recently for weak noise and small frequencies
within a two-state approach in Ref. [20]. One of the
most surprising findings, however, is the resonancelike
suppression of higher harmonics at certain values of the
noise strength accompanied by phase jumps of 7, an ef-
fect that has been termed noise induced resonance (NIR)
[16]. This phenomenon has been discovered on the basis
of a numerical study in asymmetric bistable [16] as well
as in asymmetric stable systems [19]. In this paper, we
present a theory for NIR that is applicable for continuous
and discrete systems—stable or multistable.

In Sec. II we derive an expression for the amplitudes
of higher harmonics in periodically driven, noisy nonlin-
ear systems in terms of the cumulants of the undriven
process. We derive general conditions under which noise
induced resonances occur. In Sec. III we apply our gen-
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eral result to a symmetric and an asymmetric monostable
system. In Sec. IV we consider an asymmetric two-state
system and a symmetric three-state system.

II. GENERAL THEORY

We consider a nonlinear noisy system with a periodic
input Asin Qt and an output, described by the Langevin
equation

z = f(z) +£(t) + Asin Q, (1)

with white Gaussian noise £(t), i.e.,

(€(B)E(t) =2Dé(t — 1), (£(2) =0. (2)

The output = and time t as well as all parameters are
considered to be dimensionless. The corresponding prob-
ability density approaches for large times an asymptotic
probability density [10], which is given for small driving
frequencies 2 by

1 U(zx Az sin Qt
Pz, t) = 7 XP (— l()) — D ) , (3)

with U'(z) = —f(z). We restrict ourselves here to
bounded systems, i.e., f(x) is such that the process z(t)
approaches a stationary process without the external sig-
nal AsinQt. The partition function Z is given by

Z = Z(a(t)) = /w exp (—@ - a(t)a:) de, (4)

— o0

with
a(t) = %sinﬂt. (5)

The spectral density of a periodically driven stochastic
process consists of a continuous Lorentz-like background
Sp(w) plus & spikes S,(w) at the multiples of the driving
frequency [10]. The § spikes correspond to the periodicity
of the time-averaged correlation function ((z(t+7)z(t))),
for large time separations 7
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({x(t+ 1)z (1)), = (et +7))(2 (),

= Z |cn|? exp(inf2T),
Se(w)=4m > |en|?8(w — ), (6)

where ¢, are the complex-valued Fourier coefficients
of the time-dependent mean value (z(¢))
= [ zPas(z,t)dz. In order to obtain the weight |c,|?
of the harmonics in the power spectrum, we have to cal-
culate the Fourier series of the mean value (z(t)) by using
the adiabatic probability density Eqgs. (3) and (4)

(@ (1)) = o In Z(a(t)). ™)

In terms of the unperturbed (A = 0) partition function
Zy, the partition function Z(a(t)) can be written as

Z(a(t)) = Zo®(a(t)), (8)

with the characteristic function of the unperturbed pro-
cess ®(s) = (exp(—sz))o. The mean value (z(t)) is then
given by the derivative of the cumulant generating func-
tion, i.e.,

S B a0

n=1

(@(t)) = ~ o In®(a(t) =

where K,, are the cumulants of the unperturbed process.
Reordering the sum in (9) in terms of a Fourier series one
obtains with (5)

Ko 21
+1
e =3 5 (35)
" ™
+2,§ ol (E) cos (th + nE)
Z n+2H—1 i z (10)
Nn+)!'\2D)

The explicit summation of (10) requires the knowledge of

all cumulants of the unperturbed process, given in terms
of the moments M,, = (z™) by the determinant [21]

M 1 0 0 0
M, M; 1 0 0
Ms M, )M, 1 0

My M )M Q)M 1

My My (M5 (DM (M, -

n

Restricting ourselves to leading order contributions of
each harmonic, Eq. (10) becomes

(o) ~ Ky + 25)1 (%) ({%)m
X cos (nS_)t-{—ng), (11)

where the intensity of each harmonic is characterized by
a single cumulant. The weight of the overtones in the
spectral density |c,|? can then be written in terms of the
cumulants of the undriven process

2
47n'?|c,|? 4T i A\% K,
T = 2|n | = 2n Z oD LA (12)
A (2D) ppar 2D U(n+1)!
4 K-,-,_+1 2
~ (ZD)M( = ) : (13)

Noise induced resonances, i.e., the zeros of the Fourier co-
efficients ¢,,, are therefore connected with zeros of cumu-
lants. The basic harmonic (n = 1), given by the second
cumulant, is positive, implying the nonexistence of NIR’s
at the basic harmonic at weak signals. All the other cu-
mulants can have a positive and a negative sign yielding
the possibility of noise induced resonances. For larger
A/D the next-to-leading order contributions in (12) be-
come relevant [i.e., Eq. (12) has to be applied], resulting
in a shift or removal of NIR.

Equations (10)—(13) are the main results and are dis-
cussed for specific examples below.

III. CONTINUOUS SYSTEMS

In this section we study noise induced resonances in
a symmetric monostable system, characterized by the
Langevin equation (1) (in dimensionless units) with

1 1
U(z) = §|a:|“’ + Za:4 (14)

and vy < 2. To show the occurrence of NIR’s, we analyze
the cumulants of the unperturbed process at small and
large noise strengths separately.

Computing the stationary moments at weak noise, the
z% term in Eq. (14) can be neglected, yielding

_ ( 2) — P(3/'7)( D)Z/’y’

L(1/v)
K, = (z*) — 3(z?)?
4/~ 1 2
= (2D)¥/ T2 (1/7) [C(5/7)T(1/y) —3T%(3/7)] . (15)

For v < 2, K4 is positive, while for v = 2, i.e., for a
Gaussian distribution, the fourth cumulant K, vanishes
by definition.

For large noise D, the |z|Y term in (14) can be ne-
glected, yielding for the stationary cumulants

_ TG/ ,py/2

1
K4 = 4D—I—;51—

/4 [T(5/4)T'(1/4) — 3T?(3/4)] < 0. (16)
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For v < 2, the fourth cumulant and therefore—for weak
modulation—the amplitude of the third harmonic have
at least one zero. Numerical computation of the sta-
tionary cumulants yields exactly one zero, i.e., one NIR
in the third harmonic (see Fig. 1). For v = 2, i.e., for
a parabolic potential minimum, the cumulants, starting
out from zero at weak noise, increase monotononically
without a zero.

The situation is different for asymmetric systems with
a parabolic minimum, e.g.,

Uas(z) = lwz + la:‘1 —azx. (17)
2 4

At large noise, the term —az causing the asymmetry can

be neglected and the cumulants are dominated by the

quartic term in Eq. (17), i.e., are given by Eq. (16). For

weak noise, an asymptotic evaluation of the first four

moments yields for the cumulants

D 3D 36z%D .
K2:;5<1—F+T+O(D) s
6x9D? 21D  144z}D 2
K3 =— 6 (1— i + 6 +0(D?) |,
6D3 182
K, = -5 (1 -z O(D)) , (18)

where x¢ denotes the location of the minimum of the po-
tential (17) and w? = 1 + 3z2 the second derivative of
the potential at zo. For 2 > 1/15 the fourth cumulant
changes its sign with increasing noise strength leading to
at least one NIR in the third harmonic. The location of
the precise position of the NIR requires the full calcula-
tion of the cumulants.

In Fig. 2 the intensity of the third harmonic (13) is
shown as a function of the noise strength D. We find
one NIR, i.e., one zero of the cumulant, which is shifted
towards larger values of the noise strength for increas-
ing asymmetry a. We also want to mention the remark-
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FIG. 1. The scaled weights of the third (solid line) and the
fifth (dashed line) overtone s and s in the symmetric system
are shown as a function of the noise intensity.
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FIG. 2. The scaled weight of the third overtone 3 is shown
for the asymmetric monostable model at a = 0.5 (solid line)
and a = 1 (dashed line) as a function of the noise intensity.

ably good agreement between the full numerical Fokker-
Planck analysis of the system with the potential (17) in
[19] and our analytical prediction based on the cumu-
lants. For ¢ = 0.5, 4 = 0.01, and @ = 0.01, the NIR in
the third harmonic has been found in [19] at D = 0.109.
The zero of the cumulant K, agrees up to the third digit
with this value.

IV. DISCRETE SYSTEMS

We now want to apply our general theory to discrete
systems, i.e., systems with only a finite number of dis-
crete states z,,. The most simple of such systems is a
two-state system with states at —z¢ and zy. Denoting
the transition rates from +x¢ to Fxo by r4(t) and the
probability for the system being at time t at xzo by
p+(t), the two-state dynamics is described by the master
equation

Px(t) = r+(H)p=(t) — r=(H)p=(8). (19)
Without external periodic fields (r4 are time inde-
pendent), the stationary probabilities py are given by

p+ = r+/(r4+ + r_). The cumulants of the stationary
density are readily obtained as

K1 = (p+ — p-)o,

K, =4p,p_zd,

K3 = —8p.p_(py —p-)z},

Ki=-2(3(p+ —p-)* —4(p+ —p-) + )zg.  (20)
The second cumulant is only zero in the trivial cases
p+ = 1 or 0. The third cumulant is identically zero for
the symmetric two-state system (p; = 1/2); otherwise

it does not change sign by varying p, between 0 and 1.
The fourth cumulant has a nontrivial zero at

pi=%(1i—%), (21)
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i.e., for an asymmetric two-state system. Using the same
notation as in [19], i.e., 74 = r_ exp(2F/D), the NIR of
the third harmonic is located at

2F
D= Lo

The numerically found NIR’s for this system in [19] do
not compare as well with the analytical values above
(10% deviation), since the signal strengths used in the
simulations in [19] are too large for the approximation
(13) to hold.

Discrete symmetric systems also show NIR’s. As an
example we consider the symmetric three-state system.
It is characterized by the three states g, —x¢, and 0. The
stationary probability of the system being in either of
the two states +x¢ is given by p, while the probability of
being at = 0 is correspondingly 1 — 2p. The stationary
cumulants are given by

(22)

K, = 2pz?, K4 = 2pz3(1 — 6p). (23)
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The fourth cumulant has a nontrivial zero at p = 1/6,
i.e., the third harmonic shows a noise induced resonance.

V. CONCLUSIONS

We have derived an analytical expression for the am-
plitudes of higher harmonics in nonlinear noisy systems
driven by a periodic signal, valid for small driving fre-
quencies. Conditions have been given under which a noise
induced resonance will occur. We have shown that these
conditions can be met by continuous as well as discrete,
stable, and multistable systems.
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